正規分布の和の再現性
独立な確率変数X,Yがそれぞれ確率分布PX(x), PY(y)に従うとします.
各確率変数の和,X+Yが従う確率分布をPX+Y(z)とする 確率P(X+Y=z)を考えると,
X+Y=z
となるのは,
X=x, Y=z-x
としたとき,両者の差がzとなるすべての組み合わせとなります.
XはPX(x),YはPY(z-x)に従うので,両者が同時に起こる確率は,PX(x)PY(z-x) です.
\( \Large P_{X+Y} (z) = \displaystyle \int_{-\infty}^{ \infty } P_{X,Y} (t,z-t) dt \)
X,Yがそれぞれ独立であると仮定したので,\( \Large P_{X,Y} (z) = P_X(x) P_Y (y) \) が成立します.したがって,
\( \Large P_{X+Y} (z) = \displaystyle \int_{-\infty}^{ \infty } P_{X} (t) P_Y(z-t) dt \)
となります.それぞれが正規分布に従うので,
\( \Large P_{X} (x) = \frac{1}{\sqrt{2 \pi \sigma_X^2}} exp \left[- \frac{(x-\mu_X)^2}{2 \sigma_X^2} \right] \)
\( \Large P_{Y} (x) = \frac{1}{\sqrt{2 \pi \sigma_Y^2}} exp \left[- \frac{(x-\mu_Y)^2}{2 \sigma_Y^2} \right] \)
となりますので,代入すると,
\( \Large    \begin{eqnarray} P_{X+Y} (z) &=& \displaystyle \int_{-\infty}^{ \infty } \frac{1}{\sqrt{2 \pi \sigma_X^2}} 
exp \left[- \frac{(t-\mu_X)^2}{2 \sigma_X^2} \right] 
\frac{1}{\sqrt{2 \pi \sigma_Y^2}} 
exp \left[- \frac{(z-t-\mu_Y)^2}{2 \sigma_Y^2} \right]dt
 \\
&=& \frac{1}{2 \pi \sqrt{\sigma_X^2 \sigma_Y^2}} \displaystyle \int_{-\infty}^{ \infty }  
exp \left[- \frac{(t-\mu_X)^2}{2 \sigma_X^2} - \frac{(z-t-\mu_Y)^2}{2 \sigma_Y^2} \right]dt
 \\
\end{eqnarray}  \)
と表すことができます.
指数部分は,
\(  \begin{eqnarray} && - \frac{(t-\mu_X)^2}{2 \sigma_X^2} - \frac{(z-t-\mu_Y)^2}{2 \sigma_Y^2} \\
  &=& 
- \frac{\sigma_Y^2(t^2-2 \mu_X t+ \mu_X^2) + \sigma_X^2 (z^2+t^2+\mu_Y^2 + 2 \mu_Y t-2zt-2\mu_Y z)}{2 \sigma_X^2 \sigma_Y^2} \\
&=& 
- \frac{(\sigma_X^2 + \sigma_Y^2) \color{red}{t^2}-2(\sigma_Y^2 \mu_X + \sigma_X^2 z - \sigma_X^2 \mu_Y) \color{red}{t} + \sigma_Y^2 \mu_X^2 + \sigma_X^2 z^2 + \sigma_X^2 \mu_Y^2 - 2 \sigma_X^2 \mu_Y z} {2 \sigma_X^2 \sigma_Y^2}\\
&=& 
- \frac{\sigma_X^2+\sigma_Y^2}{2\sigma_X^2 \sigma_Y^2} \left\{ \color{red}{t^2}-\frac{2(\sigma_Y^2 \mu_X + \sigma_X^2 z - \sigma_X^2 \mu_Y)}{\sigma_X^2 + \sigma_Y^2} \color{red}{t} + \frac{
 \sigma_Y^2 \mu_X^2 + \sigma_X^2 z^2 + \sigma_X^2 \mu_Y^2 - 2 \sigma_X^2 \mu_Y z} { \sigma_X^2 + \sigma_Y^2} \right\} \\
\end{eqnarray}  \)
\( \Large t^2 + 2b t + c = (t+b)^2 - b^2 +c \)より,
\(  \begin{eqnarray} 
&=& 
- \frac{\sigma_X^2+\sigma_Y^2}{2\sigma_X^2 \sigma_Y^2} 
\left\{ \color{red}{t^2}-\frac{2(\sigma_Y^2 \mu_X + \sigma_X^2 z - \sigma_X^2 \mu_Y)}{\sigma_X^2 + \sigma_Y^2} \color{red}{t} + \left[ \frac{(\sigma_Y^2 \mu_X + \sigma_X^2 z - \sigma_X^2 \mu_Y)}{\sigma_X^2 + \sigma_Y^2} \right]^2 - \left[ \frac{(\sigma_Y^2 \mu_X + \sigma_X^2 z - \sigma_X^2 \mu_Y)}{\sigma_X^2 + \sigma_Y^2} \right]^2+ \frac{
 \sigma_Y^2 \mu_X^2 + \sigma_X^2 z^2 + \sigma_X^2 \mu_Y^2 - 2 \sigma_X^2 \mu_Y z} { \sigma_X^2 + \sigma_Y^2} \right\} \\
 &=& 
- \frac{\sigma_X^2+\sigma_Y^2}{2\sigma_X^2 \sigma_Y^2} 
\left\{ \left[ \color{red}{t}-\frac{(\sigma_Y^2 \mu_X + \sigma_X^2 z - \sigma_X^2 \mu_Y)}{\sigma_X^2 + \sigma_Y^2} \right]^2  - \left[ \frac{(\sigma_Y^2 \mu_X + \sigma_X^2 z - \sigma_X^2 \mu_Y)}{\sigma_X^2 + \sigma_Y^2} \right]^2+ \frac{
 \sigma_Y^2 \mu_X^2 + \sigma_X^2 z^2 + \sigma_X^2 \mu_Y^2 - 2 \sigma_X^2 \mu_Y z} { \sigma_X^2 + \sigma_Y^2} \right\} \\ 
\end{eqnarray}  \)
第二,三項は,
\(  \begin{eqnarray} 
  && 
- \frac{\sigma_X^2+\sigma_Y^2}{2\sigma_X^2 \sigma_Y^2} 
\left\{   - \left[ \frac{(\sigma_Y^2 \mu_X + \sigma_X^2 z - \sigma_X^2 \mu_Y)}{\sigma_X^2 + \sigma_Y^2} \right]^2+ \frac{
 \sigma_Y^2 \mu_X^2 + \sigma_X^2 z^2 + \sigma_X^2 \mu_Y^2 - 2 \sigma_X^2 \mu_Y z} { \sigma_X^2 + \sigma_Y^2} \right\} \\ 
 &=& 
- \frac{\sigma_X^2+\sigma_Y^2}{2\sigma_X^2 \sigma_Y^2} 
\left\{   -  \frac{(\sigma_Y^2 \mu_X + \sigma_X^2 z - \sigma_X^2 \mu_Y)^2}{(\sigma_X^2 + \sigma_Y^2)^2} + \frac{
 (\sigma_X^2 + \sigma_Y^2)(\sigma_Y^2 \mu_X^2 + \sigma_X^2 z^2 + \sigma_X^2 \mu_Y^2 - 2 \sigma_X^2 \mu_Y z)} { (\sigma_X^2 + \sigma_Y^2)^2} \right\} \\ 
 &=& - \frac{\sigma_X^2+\sigma_Y^2}{2\sigma_X^2 \sigma_Y^2} \left\{ \begin
 {array}{1}
-  \frac{\color{cyan}{\sigma_Y^4 \mu_X^2} + \color{red}{\sigma_X^4 z^2}  +\color{green}{\sigma_X^4 \mu_Y^2} + 2 \sigma_X^2 \sigma_Y^2 \mu_X z -2\sigma_X^2 \sigma_Y^2 \mu_X \mu_Y \color{blue}{-2\sigma_X^4  \mu_Y z}}{(\sigma_X^2 + \sigma_Y^2)^2}\\
  \frac{
  \sigma_X^2\sigma_Y^2 \mu_X^2 + \color{red}{\sigma_X^4 z^2} + \color{green}{\sigma_X^4 \mu_Y^2} - \color{blue}{2 \sigma_X^4 \mu_Y z}+\color{cyan}{\sigma_Y^4 \mu_X^2} + \sigma_X^2 \sigma_Y^2z^2 + \sigma_X^2 \sigma_Y^2\mu_Y^2 - 2 \sigma_X^2 \sigma_Y^2\mu_Y z} { (\sigma_X^2 + \sigma_Y^2)^2}
  \end{array} \right\}
 \\  
\end{eqnarray}  \)
色の部分がキャンセルされるので,
\(  \begin{eqnarray} 
  &=& - \frac{\sigma_X^2+\sigma_Y^2}{2\sigma_X^2 \sigma_Y^2} \left\{ 
  \frac{ -2 \sigma_X^2 \sigma_Y^2 \mu_X z + 2\sigma_X^2 \sigma_Y^2 \mu_X \mu_Y + 
  \sigma_X^2\sigma_Y^2 \mu_X^2  + \sigma_X^2 \sigma_Y^2z^2 + \sigma_X^2 \sigma_Y^2\mu_Y^2 - 2 \sigma_X^2 \sigma_Y^2\mu_Y z}{(\sigma_X^2 + \sigma_Y^2)^2}
  \right\}
\\ 
&=& - \frac{\sigma_X^2+\sigma_Y^2}{2\sigma_X^2 \sigma_Y^2} \sigma_X^2 \sigma_Y^2 \left\{ 
\frac{ -2  \mu_X z + 2 \mu_X \mu_Y + 
   \mu_X^2  + z^2 + \mu_Y^2 - 2 \mu_Y z}{(\sigma_X^2 + \sigma_Y^2)^2}
\right\}
 \\
&=& - \frac{ \{ z-(\mu_X + \mu_Y) \}^2}{2(\sigma_X^2  + \sigma_Y^2)}  \\ 
\end{eqnarray}  \)
と簡単になる.
指数部分に戻すと,
\(  \begin{eqnarray} 
 && -\frac{\sigma_X^2 + \sigma_Y^2}{2\sigma_X^2  \sigma_Y^2} \left[ \color{red}{t}-\frac{(\sigma_Y^2 \mu_X + \sigma_X^2 z - \sigma_X^2 \mu_Y)}{\sigma_X^2 + \sigma_Y^2} \right]^2
 - \frac{ \{ z-(\mu_X + \mu_Y) \}^2}{2(\sigma_X^2  + \sigma_Y^2)}  \\ 
\end{eqnarray}  \)
したがって,
\(     \begin{eqnarray} P_{X+Y} (z) 
&=& \frac{1}{2 \pi \sqrt{\sigma_X^2 \sigma_Y^2}} \displaystyle \int_{-\infty}^{ \infty }  
exp \left[-\frac{\sigma_X^2 + \sigma_Y^2}{2\sigma_X^2  \sigma_Y^2} \left\{ \color{red}{t}-\frac{(\sigma_Y^2 \mu_X + \sigma_X^2 z - \sigma_X^2 \mu_Y)}{\sigma_X^2 + \sigma_Y^2} \right\}^2
- \frac{ \{ z-(\mu_X + \mu_Y) \}^2}{2(\sigma_X^2  + \sigma_Y^2)} \right]dt
 \\
&=& \frac{1}{2 \pi \sqrt{\sigma_X^2 \sigma_Y^2}} exp \left[- \frac{ \{ z-(\mu_X + \mu_Y) \}^2}{2(\sigma_X^2  + \sigma_Y^2)} \right] \displaystyle \int_{-\infty}^{ \infty }  
exp \left[-\frac{\sigma_X^2 + \sigma_Y^2}{2\sigma_X^2  \sigma_Y^2} \left\{ \color{red}{t}-\frac{(\sigma_Y^2 \mu_X + \sigma_X^2 z - \sigma_X^2 \mu_Y)}{\sigma_X^2 + \sigma_Y^2} \right\}^2
\right]dt
 \\
\end{eqnarray}  \)
積分項目は,
\(     \begin{eqnarray} && \displaystyle \int_{-\infty}^{ \infty }  
exp \left[-\frac{\sigma_X^2 + \sigma_Y^2}{2\sigma_X^2  \sigma_Y^2} \left\{ \color{red}{t}-\frac{(\sigma_Y^2 \mu_X + \sigma_X^2 z - \sigma_X^2 \mu_Y)}{\sigma_X^2 + \sigma_Y^2} \right\}^2
\right]dt
 \\
&=& \displaystyle \int_{-\infty}^{ \infty }  
exp \left[-a\{ t-b\}^2
  \right]dt
  \\
\end{eqnarray}  \)
と簡単に記載することができ,
\( \Large t-b = w \)とすると,
\( \Large dt = dw \)
\(     \begin{eqnarray} 
&=& \displaystyle \int_{-\infty}^{ \infty }  
exp \left[-a w^2
  \right]dt
  \\
  &=& \sqrt{\frac{\pi}{a}} \\
  
\end{eqnarray}  \)
したがって,
\(     \begin{eqnarray} P_{X+Y} (z) 
  &=& \frac{1}{2 \pi \sqrt{\sigma_X^2 \sigma_Y^2}} exp \left[- \frac{ \{ z-(\mu_X + \mu_Y) \}^2}{2(\sigma_X^2  + \sigma_Y^2)} \right] 
\sqrt{ \frac{\pi (2 \sigma_X^2 \sigma_Y^2)}{
\sigma_X^2 + \sigma_Y^2}} \\
&=& \frac{1}{2 \pi \sqrt{\sigma_X^2 \sigma_Y^2}} \sqrt{ \frac{\pi (2 \sigma_X^2 \sigma_Y^2)}{
\sigma_X^2 + \sigma_Y^2}} exp \left[- \frac{ \{ z-(\mu_X + \mu_Y) \}^2}{2(\sigma_X^2  + \sigma_Y^2)} \right] 
 \\
&=& \frac{1}{ \sqrt{2 \pi(\sigma_X^2 + \sigma_Y^2)}}  exp \left[- \frac{ \{ z-(\mu_X + \mu_Y) \}^2}{2(\sigma_X^2  + \sigma_Y^2)} \right] 
 \\
\end{eqnarray}  \)
これは,
   平均:\( \Large    \mu_X + \mu_Y \)
 分散:\( \Large    \sigma_X^2 + \sigma_Y^2 \)
の正規分布である.